Mechanistic insights on platinum- and palladium-pincer catalyzed coupling and cyclopropanation reactions between olefins.
نویسندگان
چکیده
The mechanism of M(II)-PNP-pincer catalyzed reaction between (i) ethene, (ii) trans-butene with 2-methylbut-2-ene, 2,3-dimethylbut-2-ene and tert-butylbutene is examined by using density functional theory methods (where M = Pt or Pd). All key intermediates and transition states involved in the reaction are precisely located on the respective potential energy surfaces using the popular DFT functionals such as mPW1K, M06-2X, and B3LYP in conjunction with the 6-31+G** basis set. The reaction between these olefins can lead to a linear coupling product or a substituted cyclopropane. The energetic comparison between coupling as well as cyclopropanation pathways involving four pairs of olefins for both platinum (1-4) and palladium (5-8) catalyzed reactions is performed. The key events in the lower energy pathway in the mechanistic course involves (i) a C-C bond formation between the metal bound olefin (ethene or trans-butene) and a free olefin, and (ii) two successive [1,2] hydrogen migrations in the ensuing carbocationic intermediates (1c-4c, and 1d-4d), toward the formation of the coupling product. The computed barriers for these steps in the reaction of metal bound ethene to free tert-butylbutene (or other butenes) are found to be much lower than the corresponding steps when trans-butene is bound to the metal pincer. The Gibbs free energy differences between the transition states leading to the coupling product (TS(d-e)) and that responsible for cyclopropanated product (TS(d-g)) are found to be diminishingly closer in the case of the platinum pincer as compared to that in the palladium system. The computed energetics indicate that the coupled product prefers to remain as a metal olefin complex, consistent with the earlier experimental reports.
منابع مشابه
Efficient Suzuki and Sonogashira coupling reactions catalyzed by Pd/DNA@MWCNTs in green solvents and under mild conditions
The palladium nanoparticles were immobilized on DNA-modified multi walled carbon nanotubes as stable and powerful heterogeneous catalyst. The catalyst was characterized by FT-IR spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, inductively coupled plasma and elemental analysis. DNA as a well-defined structure and...
متن کاملEmployment of Palladium Pincer Complex Catalysts and Lewis Acids for Synthesis and Transformation of Organometallic Compounds
This thesis is mainly focused on the development of new palladium catalyzed transformations using so-called “pincer” complexes. These complexes were applied as catalysts in two important areas of organometallic chemistry: substitution of propargylic substrates by dimetallic reagents; and allylation of aldehydes and imines by allylstannanes. In addition, this thesis includes studies on Lewis aci...
متن کاملSynthesis of 9Z-9-substituted retinoic acids by palladium catalyzed coupling reaction of a vinyl triflate with alkenyl stannanes.
Palladium catalyzed cross coupling reactions of a vinyl triflate intermediate and various alkenyl stannanes afforded trisubstituted Z-olefins stereoselectively in high yields. These olefins were then converted to the corresponding 9Z-retinoic acids via Horner-Emmons reaction and subsequent basic hydrolysis in excellent yields.
متن کاملNickel-catalyzed Heck-type reactions of benzyl chlorides and simple olefins.
Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives are described. A wide range of both the benzyl chloride and alkene coupling partners are tolerated. In contrast to analogous palladium-catalyzed variants of this process, all reactions described herein employ electronically unbiased aliphatic olefins (inclu...
متن کاملPalladium(II)-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions
A series of general and selective Pd(II)-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO) ligated palladium complex (6) as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 41 27 شماره
صفحات -
تاریخ انتشار 2012